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Abstract
Calculations of the patterns of x-ray diffraction from shocked crystals derived from the results
of non-equilibrium molecular dynamics (NEMD) simulations are presented. The atomic
coordinates predicted from the NEMD simulations combined with atomic form factors are used
to generate a discrete distribution of electron density. A fast Fourier transform (FFT) of this
distribution provides an image of the crystal in reciprocal space, which can be further processed
to produce quantitative simulated data for direct comparison with experiments that employ
picosecond x-ray diffraction from laser-irradiated crystalline targets.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Non-equilibrium molecular dynamics (NEMD) simulations
have started to provide exceptional insights into the atomistic
behaviour of materials under shock compression. A significant
amount of effort has concentrated on the study of the
elastic–plastic transition within both single and polycrystalline
materials [1–4] as well as shock-induced polymorphic phase
transitions [5–7]. In recent years, the impressive advances
in computing power and storage space that have been made
permit the size of such NEMD simulations to approach
hundreds of millions (and in certain cases billions) of
atoms, corresponding to samples of side-length approaching
a micron, for simulated time-spans of up to hundreds of
picoseconds [8, 9]. Given the vast amounts of data that
can be generated by such simulations, a judicious choice

of data-reduction and visualization systems is required in
order to extract physical understanding from the raw data
comprising the time-dependence of atomic coordinates. To
date, most structural analysis has been limited to traditional
short range methods such as obtaining radial distribution
functions, centrosymmetry parameters [10] and coordination
numbers.

However, simulations with these large spatial and
temporal dimensions are starting to approach conditions
found in experiments where matter, of thickness microns
to several tens of microns, is shock compressed by high-
power laser–matter interactions, and diagnosed by (amongst
other techniques) in situ x-ray diffraction [11, 12]. These
experiments have typically employed x-ray flashes of durations
of several hundred picoseconds to a few nanoseconds, although
picosecond resolution has been obtained by use of streak-
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camera technology [13], and laser-plasma x-ray sources with
durations of order 100 fs can now be produced routinely [14].
It is also expected that this field will benefit from the extremely
bright femtosecond sources that will be afforded by future x-
ray free-electron-laser technology [15].

As the NEMD simulations provide direct physical insight
into the shock-deformation of materials at the lattice level,
and the experimental and simulated time and length scales
are converging, it is appropriate to make direct comparisons
between the experimentally observed x-ray diffraction signals,
and those predicted by the NEMD simulations. Indeed, such
connections have started to be made: for example, Bringa
and co-workers recently used NEMD simulations to calculate
the shift in both the Bragg (reflected) and Laue (transmitted)
peaks in shock compressed copper [8], which were directly
related to the time-dependent shape of the unit cell, and via
this provided information regarding the degree of plastic flow.
Hawreliak et al directly compared the diffraction patterns
predicted by NEMD with the experimental data for the α–ε
transition in shocked iron, noting, amongst many other things,
good agreement between the predicted x-ray line widths in the
ε phase and those seen experimentally—an observation which
is consistent with the predicted mean size of two families
of domains with orthogonal c-axes [12]. However, whilst
simulated diffraction patterns have been presented, to date
the procedure by which one can take the output of a NEMD
simulation and produce quantitative predictions of what will be
observed in an experiment has not been discussed in any detail.
In this paper we present such an analysis, outlining how to
post-process the NEMD data to efficiently produce diffraction
patterns that can be directly compared with data obtained in
commonly-employed experimental geometries.

2. Calculation of reciprocal space

Neglecting the effects of absorption, and in the kinematic
approximation, when an x-ray of wavevector k0 is incident on
a crystal, the intensity I (ks) of the elastically scattered x-ray
of wavevector ks = k0 + q is proportional to the modulus-
squared of the Fourier component of the electron density of the
lattice with reciprocal lattice vector q. If, in a very simplified
approach, we represent the atoms by point scatterers located
at the spatial coordinates provided by the MD simulation, then
the scattered intensity is given by

I (ks) ∝ |F(q)|2 ∝
∣
∣
∣
∣

N∑

j=1

Z j exp(iq · r j )

∣
∣
∣
∣

2

, (1)

where Z j is the atomic number of the j th atom, located at
position r j , and the sum is over all N atoms within the crystal.
Whilst such a simple calculation can be of use in sampling
specifically defined regions of reciprocal space which require
the calculation of a very limited number of Fourier components
(for example, a volume around a particular Bragg peak), it is
inefficient when applied to calculations of the full range of
reciprocal space due to the O(N2) computational operations
required. Information about the full range of reciprocal
space is potentially useful in many situations: for example to

understand the polycrystalline response to shock compression,
or to single crystal analysis where the large defect densities
generated may give rise to significant scattering between the
Bragg peaks.

Likewise performing an FT by this method is also sensible
when the number of atoms is small. However, it is because
the number of atoms in modern NEMD simulations is so large
that this becomes prohibitive. While there is plenty of useful
information to be gained from small scale equilibrium MD
simulations, applications such as shock waves often require
very large spatial and temporal dimensions in order not to
hinder effects such as defect motion and to avoid reflection
from the boundaries. In such NEMD simulations, the initial
system, usually a perfect single crystal or a many grained
polycrystal, is thermalized under equilibrium conditions before
being deformed. As shock waves are assumed to be adiabatic
there is no additional coupling of the atoms to a heat bath in
NEMD.

In order to calculate reciprocal space from a large
scale NEMD simulation we need a more efficient means
of performing the Fourier transform than that given in
equation (1). The method we employ is the fast Fourier
transform (FFT) approach, the details of which are well known
and will not be repeated here, save to recall that an FFT is an
efficient method to compute a discrete Fourier transform (DFT)
in O(N log2 N) operations rather than O(N2). Whereas the
summation used in the simple method of equation (1) exploited
the fact that the position vectors of the atoms provided by the
MD simulations could be used directly as delta functions, a
DFT requires an evenly spaced sample array in real space,
making it unsuitable. However, atomic coordinates from
the MD actually represent the centres of atoms which have
a spatially extended electron distribution. By associating
an electron distribution with each atomic coordinate we can
construct a discrete regular array of electron density upon
which we can perform the FFT.

Calculations of spherically-symmetric electron distribu-
tions for the elements are available from a number of
sources [16]. Certain very simple analytic forms exist which
represent the distributions in real space as a sum of a finite
number of Gaussian profiles [17]. The Fourier transform of
these radial distributions, the atomic form factors, are also
available based on a number of approximations, such as the
Thomas–Fermi or Dirac–Fock methods [16], and we use such
forms here for the quantitative calculation of diffraction pat-
terns.

Once an electron distribution has been associated with
each atomic coordinate, the level of real space sampling is
determined by the range of interest in reciprocal space, with the
number of samples per unit cell in real space determining the
range of the transformation in reciprocal space. For example,
if we wish to explore reciprocal space out to the fifth order
(based on a conventional unit cell in real space) then we require
a range of at least 10 reciprocal lattice vectors, corresponding
to 10 samples per side of a conventional unit cell, i.e. 103 over
the conventional cell volume. On the other hand the resolution
in reciprocal space is determined by the number of unit cells in
the MD calculation, and hence the requirement for large MD
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simulations if we wish to have high resolution in reciprocal
space, and in the resultant calculated diffraction patterns.

Although we can use the physical electron distribution to
calculate a realistic array of electron density, it is advantageous
to exploit this method for greater efficiency. Difficulties arise
because of the interplay between the width of the electron
distribution in real space and the radial extent of the intensity
of the Fourier components in reciprocal space. If the spatial
profile is too narrow, the Fourier components in reciprocal
space could still have significant amplitude at the edges of the
chosen range of reciprocal space, resulting in the pattern being
reflected back (as FFTs are periodic), or overlapping, which
is known as aliasing. On the other hand, too wide a profile
in real space for a chosen range of reciprocal space implies
that the intensity of high orders in reciprocal space will be
too weak, and information may be lost. In cases where we
have selected a specific range of reciprocal space, we have
found it useful to choose a Gaussian profile in real space such
that the 4σ position of the Gaussian envelope (amplitude) in
reciprocal space lies on the edge of the reciprocal space array.
Thus we are no longer assigning a physical electron density, but
are instead ‘dressing’ each atomic coordinate with a Gaussian
which allows us optimal control.

The approach of ‘dressing’ each atomic coordinate works
due to the relationship of a convolution in real space and
multiplication in reciprocal space. The Fourier transform of
the real space convolution of the atomic distribution function
with a Gaussian electron density is just the product of the
Fourier transforms of the atomic distribution function and the
Gaussian profile. Therefore, the Fourier transform of the
atomic distribution function with a physically realistic electron
density function is just:

F[ADF
⊗

ρ(r)] = F[ADF
⊗

G(r)] × F[ρ(r)]
F[G(r)]

= F[ADF
⊗

G(r)] × F(k)

G̃(k)
, (2)

where F is the Fourier transform operator, ADF is the atomic
distribution function which is simply a delta function placed
at each of atomic coordinates taken from MD, ρ(r) is the
electron density for one atom, G(r) is the Gaussian profile
of our choosing in real space and hence G̃(k) is the Fourier
transform of it and F(k) is the atomic form factor which is the
Fourier transform of ρ(r).

By exploiting the properties of Fourier transforms,
using a non-physical radial electron density in this way for
convenience does not compromise the physical validity of the
calculation. By using a convenient Gaussian atomic electron
density of know width, we avoid aliasing, and we are able
to infer the FFT of the atomic distribution. After performing
the FFT of the atomic distribution function convolved with the
Gaussian profile we can then divide by the Fourier transform
of the Gaussian profile (which we know analytically) to give us
the FFT of the atomic distribution function. We then proceed
to multiply by the atomic form factor which produces output
equivalent to using the physically realistic electron density in
the first place, as shown in equation (2).

It is evident that evaluating reciprocal space at high
orders increases the size of the calculation significantly, but

given the number of atoms involved, the FFT is still a more
computationally efficient means of viewing reciprocal space
compared with the normal FT, unless only a very small
sub-set of reciprocal space is of interest. For example,
calculating reciprocal space up to 5th order from several
million atoms can be computed in a matter of minutes on a
typical workstation. The main limitation of the FFT method
is the memory usage which is around 4 GB per million unit
cells if calculating reciprocal space up to 5th order at single
precision. Large shared memory machines are particularly
well suited to calculating FFTs of 10s or 100s of millions
of atoms. The method also works on MPI (message passing
interface) clusters, but with the disadvantage of requiring extra
memory for the FFT transposes and node overhead. However,
for analysis of MD simulations, it is often desirable to calculate
reciprocal space with some spatial resolution, and, as such, the
sample can be divided up into sections which can be calculated
quickly on single nodes. Likewise on polycrystalline or
highly defected samples where it may be necessary to gain
information about the entire sample, the reciprocal peaks are
often broad enough to allow a lower resolution, and hence the
intensities of smaller FFTs can be summed.

3. Quantitative calculations

In section 4 we will show how we can post-process
the representation of the crystal in reciprocal space to
obtain simulated diffraction patterns for specific experimental
geometries. This processing is reliant on the fact that the
intensity of the scattered radiation is proportional to the square
of the relevant Fourier component, as stated in equation (1).

Although the spatial scales of MD simulations are starting
to converge, it is still generally the case that experiments use
crystals of thickness between one and two orders of magnitude
greater than the simulations. Furthermore, there could often be
situations where due to constraints on computational resources
it is desirable to perform a simulation that has a spatial scale
significantly smaller than that used in an experiment, yet
there is a requirement to have some predictive capability for
the experimental intensity to compare with features in the
simulations. Therefore, in order to have a means estimating
what intensities might actually be found in an experiment, we
need to associate each value of |F(q)|2 in reciprocal space with
a reflectivity that corresponds to that which may be expected in
the experimental configuration.

Such an association can be made by noting that the
efficiency of scattering from a single atom is known. If
unpolarized x-rays of wavevector k0 are incident on a single
atom, and are elastically scattered into wavevector ks = k0+q,
then the differential cross-section, dσ/d� is given by

dσ

d�
= r 2

e

(1 + cos2 θ)

2
f 2(|q|, Z), (3)

where re is the classical radius of an electron, θ is the angle of
deflection and f (|q|, Z) is the atomic form factor for element
Z , which is proportional to the Fourier transform of the
spherically-symmetric electronic density distribution discussed
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Figure 1. Experimental setup of single crystal diffraction from a diverging x-ray point source. For illustration the path of some x-rays of
1.85 Å diffracting from the (002) plane of Fe are shown.

in section 2. Let us consider the case where we have performed
an NEMD simulation of a crystal which contains N atoms,

dσ

d�
= r 2

e

(1 + cos2 θ)

2

∣
∣
∣
∣

N∑

i=1

fi (|q|, Z)ei q·r j

∣
∣
∣
∣

2

. (4)

We note that if our system has only one type of atom the atomic
form factor can be separated out

dσ

d�
= r 2

e

(1 + cos2 θ)

2
f 2(|q|, Z)

∣
∣
∣
∣

N∑

i=1

ei q·r j

∣
∣
∣
∣

2

, (5)

and in this particular case we can easily remove the effect of
the form factor after performing the FFT by deconvolution
with the Gaussian in Fourier space associated with the form
factor. Absolute intensities can be obtained by noting that as
the electron density is real, the rms value of the electron density
within the system is not a function of the correlations. This
means that the integral of the intensity of Fourier components
of the electron density over the whole of reciprocal space is
a constant for a given number of atoms in a fixed volume.
This is simply a form of Parseval’s theorem which provides us
with a means of normalizing the intensity of the components
in reciprocal space, such that a given intensity density in
reciprocal space corresponds to a quantitative measure of the
scattered x-ray intensity.

This approach both neglects absorption within the
crystal (and thus would not be valid for crystal thicknesses
approaching or exceeding an absorption depth), and neglects
the effect of extinction—that is to say re-scattering within
the crystal. The proper handling of extinction effects require
wave–wave interactions that are described by dynamical
diffraction theory. The assumption of kinematic diffraction
is likely to be valid for crystals containing large numbers of
defects, or large strain gradients, as is the case in the shocked
samples considered here. It may, however, not be a valid
assumption for diffraction from large unshocked regions of the
crystal if the sample has a high degree of perfection.

We can thus, using the above approach, calculate (within
the approximations given) an absolute scattered x-ray fraction

from the MD simulation. Furthermore, it is now simple to scale
a calculated intensity. That is to say based on a simulation
of a small system, we can infer the intensity that would be
scattered in a larger system (as long as the path lengths of
the scattered rays do not traverse distances greater than of
order an absorption depth), as the intensity in this case is
directly proportional to sample thickness. Of course, it may
be that the physics of the MD simulation in question cannot be
scaled linearly, but that is a separate matter from the diffraction
calculation.

4. Experimental diffraction geometries

4.1. Single crystal diffraction

One of the primary motivations for this work is to enable
the comparison of the predictions of MD simulations with
picosecond x-ray diffraction from laser-shocked crystals. Once
the FFT has been performed, and we have the values for the
intensities of the Fourier components |F(q)|2 in reciprocal
lattice space (and know how these can be translated into
scattering cross-sections for an experimental sample), we can
proceed to calculate the pattern observed experimentally. Our
intent in this paper is to outline how such calculations are
performed, and give example output alongside experimental
results. We do not, however, go into detail concerning the
physics that may be gleaned from these comparisons, leaving
such discussions for future work dedicated to that specific
purpose.

One of the most widely used experimental geometries
for picosecond diffraction from shocked crystals has been the
diverging beam geometry [18], described by Kalantar and co-
workers [19] and explained in more detail in the appendix.
In this geometry, shown schematically in figure 1, the output
of a high-power ns optical laser is focused onto a thin foil,
generating a highly ionized plasma which in turn emits a short
pulse of quasi-monochromatic x-rays. The x-ray source is
approximated as an isotropic point source for this simulation.
Another laser beam is used to drive the shock wave in the
crystal by ablating the front surface. The x-rays penetrate far
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enough into the crystal to diffract from the regions both in front
and behind the shock front and the resulting lines are recorded
on the surrounding film packs.

To calculate the intensity incident on the film and hence
the number of photons per pixel, we sample the film by ray-
tracing back to the point source using the Laue formalism:
q = �k = ks − k0, where k0 is the incident wavevector, ks the
diffracted wavevector and q a vector in reciprocal space with
known scattering intensity.

For each sample on the film, x-rays can arrive via any
point on the crystal surface and as such the entire crystal needs
to be well sampled for each film sample. We do this by
dividing up our crystal in the surface plane into an array of sub
crystals, each of which is illuminated by a collimated beam and
hence corresponds to a single sample in reciprocal space per
film sample. Obviously the sub-crystal must be small enough
to be reasonably represented by a single reciprocal space
sample which in turn can be found by linearly interpolating
our FFT output and multiplying by the appropriate coefficients
to calculate the cross-section. One advantage of sampling (as
opposed to photon mapping) in both the film and crystal planes
is that the sampling need not be uniform which can improve
efficiency in certain situations.

As an example of this procedure we have simulated the
diffraction from a single crystal of iron shocked along the [001]
axis. The NEMD simulation was performed using the SPaSM
code [20, 21] with the Voter–Chen potential [22]. A sample
with dimensions 40.2 nm × 40.2 nm × 57.4 nm consisting of
8 million atoms were launched along the [001] direction at
a velocity of 471 m s−1 into a momentum mirror. Previous
work using this potential have shown that at this particle
velocity the iron undergoes a transition from the body-centred-
cubic α phase into the hexagonal-close-packed ε phase. An
image of the crystal after a simulation time of 8.46 ps is
shown in figure 2, where the atoms are coloured according to
coordination number. Here we can clearly see the 3 distinct
sections consisting of the unshocked region coloured grey
(right), the uniaxially compressed region in blue (middle) and
the phase changed region in red (left). For further detail about
the simulation one should refer to the original work [6].

Using the atomic coordinates provided by the MD
simulation, the diffraction pattern was calculated according
to the procedure described above. The reciprocal space was
calculated by using a real space matrix of 1024 × 1024 ×
1458 and hence requiring 6 GB of memory. This generated
reciprocal space beyond 3.2 2π

a which is the highest order
experimentally accessible using Fe He-α x-rays at 1.85 Å.
This contains 140 samples per reciprocal unit cell in the x
and y directions and 187 in the z direction corresponding to
the number of unit cells in each dimension. We set the origin
of our world coordinates to be the position of the x-ray point
source and define the crystal to be in the x–y plane, centred at
(0,1.5, −1) mm. The crystal is 3 × 3 mm in extent with the
crystallographic axis rotated by 13◦ around [001] to the world
axis. In order to calculate the absolute intensities we assumed
the crystal had a thickness of 10 μm as in the experiment. The
film packs are then positioned 60 mm away with the normal
along the [011] direction. The main rectangle is 130 mm in

Figure 2. MD simulation of Fe shocked along [001] at 471 m s−1.
Atoms are coloured according to coordination number displaying the
unshocked region coloured grey (right), the uniaxially compressed
region in blue (middle) and the phase changed region in red (left).
From [6]. Reprinted with permission from AAAS.

the [01̄1] direction and 65mm along [100]. The triangular
pack (used in the experiments) is then positioned adjacent to
this with the same extents but rotated inwards by 60◦. Some
minor rotations and offsets are then performed in order to fit the
simulation to the exact experimental geometry. To produce this
figure the film was sampled at 200μm and the crystal surface at
50 μm resolution. Generating reciprocal space from an ASCII
file containing atomic coordinates took 3 min and the tracing
took 40 min on an 8-core Xeon Mac Pro. Lower quality but
still meaningful figures can be traced in a fraction of the time.

The simulated diffraction pattern is shown in figure 3 next
to an example of experimental data taken on the Vulcan laser
[23] under experimental conditions very similar to the work
performed by Kalantar and co-workers [11]. The Fe single
crystal was coated with 20 μm of parylene-N and driven with
a 230 J pulse at 1053 nm and 6 ns duration. The x-ray source
was generated with a 1ns pulse of approximately 150 J at
527 nm, delayed by 4.5 ns with respect to the drive pulse. On
both the simulated and experimental diffraction patterns the 3
lines corresponding to unshocked, uniaxially compressed and
phase changed lattice are clearly visible. This allows a direct
comparison of NEMD simulations with experimental results.
Even without detailed analysis we can clearly see that the
strain in the uniaxially compressed region differs significantly
between the NEMD simulation and the experiment from the
position of the line while the unshocked and HCP lines either
side match well. The line widths of the HCP features in the
simulated and experimental data are comparable and the peak
intensities are within an order of magnitude (after background
subtraction) if we assume an x-ray conversion efficiency of
10−3 and sensitivity for Fujifilm MS type-image plate of
around 100 photons per unit PSL per pixel [24]. Given that the
image plate has a sensitivity of five orders of magnitude [25]
and the images displayed are logarithmic, we conclude that
the estimated absolute intensities that would be recorded are
sufficiently accurate to aid in the design of experiments.
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Figure 3. Simulated (left) and experimental (right) film recordings of x-rays diffracted from shock compressed iron. See the text for details.
Both clearly show the unshocked, uniaxially compressed and phase changed lines. Miller indices for several reflections are indicated. The
plotted intensity is logarithmic for the simulated diffraction with a range of 5 orders of magnitude with, a maximum number of photons per
unit area of 3 × 10−3 m−2 of the total number emitted by the source in the helium alpha line.

Target

Drive beam

Collimated
X-ray beam

Film

Figure 4. Polycrystalline experimental setup.

4.2. Polycrystalline diffraction

Although many experiments involving picosecond diffraction
from shocked materials have been performed with single
crystals, it has recently been shown that single shot diffraction
patterns can be obtained from polycrystalline samples using
laser-plasma x-ray sources [26]. In this case, a collimated
beam of quasi-monochromatic radiation, once more produced
from the resonance lines of helium-like atoms, is incident on
a foil of polycrystalline metal. In the experimental work of
Hawreliak et al, the source to foil distance was 5 cm, and the
diffracted x-rays were recorded on a cylindrical film pack co-
axial with the incident x-rays. Here we simulate an experiment
of similar dimensions, though we place a planar film pack
behind the target in a normal Debye–Scherrer geometry, with
similar target to film distances as those used in the experiment
(conversion to a cylindrical film pack geometry provides no
extra information). The geometry is shown in schematic form
in figure 4.

In terms of the post-processing of the reciprocal space
data, we note that in this case the direction of the incident beam
is fixed, and its orientation with respect to the reciprocal space
axes is simply determined by the angle ψ which the surface
normal of the foil makes to the incident beam. In this case
the experimentally observed diffraction pattern is determined
by the angle of the ks vector as k0 is fixed in direction by the

collimation and in magnitude by the monochromatic nature of
the source. As a result, ks traces out a shell in reciprocal space
which touches the origin. This in turn intersects the shells
of Ghkl of strong reflections, which are centred at the origin,
resulting in a pattern of rings on film—the well-known Debye–
Scherrer pattern.

In our calculations the crystal surface is placed at 45◦ to
the collimated x-ray beam. This allows the shell that is traced
out by ks to intersect both the x–y components (orthogonal
to shock) and the z-components (shock direction) of the Ghkl

shells and hence give an indication of the level of compression
along different crystal axes.

As an example of this procedure we have simulated the
diffraction from a polycrystal sample of Cu with x-rays of
wavelength 1.48 Å. The NEMD simulation was performed
using the LAMMPS package [27] using the Mishin EAM1
potential [28]. A sample with dimensions 72 nm × 72 nm ×
72 nm consisting of 30 million atoms in approximately 3000
grains was used. The initial sample was created with the
Atomeye utilities [29] before undergoing energy minimization
by the conjugate gradient algorithm and thermalization at
300 K. A piston was set moving into the sample at 900 ms−1

and the simulation was run for 15 ps to allow the shock wave
to travel the full extent of the sample which compressed by
approximately 20% volumetrically.

In order to compare diffracted intensities with those
observed experimentally, it was assumed that the illuminated
sample is a foil 25 μm thick and 1mm square. The diffraction
was traced in the same manner as the single crystal case except
that as the beam is collimated only one sample on the crystal
is needed for every sample of the film. The target was placed
50 mm from an x-ray point source and the beam approximated
as collimated. The 12 × 12 cm film was then placed 15mm
from the sample. The FFT was performed using 8 processors
and 32 GB of RAM on an SGI Altix 4700 in 26 min with the
tracing taking seconds.

The diffraction patterns for both the unshocked (left) and
shocked (right) foils are shown in figure 5. The maximum
intensity observed is once more within an order of magnitude
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Figure 5. Simulated diffraction from polycrystalline Cu. The figure
is split with the left side showing diffraction from the unshocked
crystal and the right-hand side from the same crystal but shocked at
900 m s−1. The plotted intensity is logarithmic with a range of 5
orders of magnitude with a maximum number of photons per unit
area of 10−5 m−2 of the total number emitted by the source in the
helium alpha line. See the text for further details.

of those found in experiments. The expansion of the diffraction
rings due to a compression of the lattice is clearly visible in the
shocked sample.

5. Summary

We have presented calculations of the x-ray diffraction
patterns from shocked crystals derived from the results of
non-equilibrium molecular dynamics (NEMD) simulations.
The atomic coordinates predicted by the NEMD simulations
combined with atomic form factors are used to generate
a discrete array of electron density. A fast Fourier
transform (FFT) of this array provides an image of the
crystal in reciprocal space, which can be further processed
to produce simulated quantitative data for direct comparison
with experiments that employ picosecond x-ray diffraction
from laser-irradiated crystalline targets. Estimates of absolute
intensities that may be observed in real experiments have been
obtained from a knowledge of x-ray scattering cross-sections,
and scaling the intensity scattered by the MD predictions
accordingly. Good agreement is found between computed and
experimental diffraction patterns, and the technique should
be useful in both designing novel experiments, as well as
in analysis of the signals obtained by using of picosecond
diffraction from shocked crystals.
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Appendix. Experimental geometry

In the diverging beam geometry, shown schematically in
figure 1, a short pulse of x-rays is generated by focussing
the output of a high-power ns optical laser onto a thin foil.
The laser intensities are such that a highly ionized plasma is
formed, and copious x-rays are produced. Depending upon the
element used, for laser intensities in the range of 1014–1016

W cm−2, a significant fraction of the radiation is emitted in the
n = 2 → 1 resonance line of the helium-like ion. These x-rays
are quasi-monochromatic in that alongside the resonance line
itself, which corresponds to the 1s2p 1P → 1s2 1S transition,
in the plasma environment there is also significant emission
in the intercombination line, 1s2p 3P → 1s2 1S, as well as
emission into dielectronic satellites. The fractional bandwidth
of these transitions taken together is of order 5×10−3. Typical
conversion efficiencies from optical laser light into these lines
is of order 10−2–10−4 [30, 31], and typical source diameters
are of order 100 μm.

The x-rays that are emitted from the hot plasma diverge
into 4π steradians. Therefore, in order to maximize the
information gleaned from diffracting from the shocked crystal,
the x-ray source is placed close to the crystal (with typical
source to crystal distances of order 1 mm), such that the
shocked crystal subtends a relatively large solid angle to the
x-ray source. The diameter of the region of the crystal which
is shocked by the laser, determined largely by considerations
of the laser energy, is typically of order 3 mm. X-rays
diffracted from the shocked crystal are recorded on large area
flat film packs placed several cm from the crystal, which are
arranged to cover as large a solid angle as possible given
the constraints imposed by experimental considerations such
as the need to provide access for the optical laser beams.
When the surface layer of thick crystals are shocked, the
diffracted radiation is collected in the reflection geometry (so-
called Bragg diffraction). Experiments with thin crystals,
with thicknesses of order 10 μm, have also simultaneously
allowed diffraction in transmission geometry (so-called Laue
diffraction). The scattered x-rays are recorded on either x-ray
film or image plates. The direct path between the x-ray source
and film packs is obscured by highly absorbing beam blocks.
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